Mathsapiens.fr

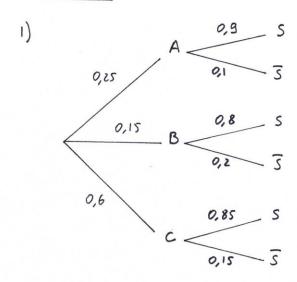
Baccalauréat général

Session 2025

Amérique du Nord – Sujet 1 21 mai 2025

Ex1:

=> Partie A:



2)
$$P(B \cap S) = P(B) \times P_{B}(S) = 0.15 \times 0.8 = 0.12$$

3)
$$P(C \cap \overline{S}) = P(C) \times P_{C}(\overline{S}) = 0.6 \times 0.15 = 0.09$$

Interpétation: la probabilité que la connexion passe par le serveur C et ne soit pas stable est égale à 0,03.

4) {A; B; C} forme un système complet d'événements. D'après la formule des probabilités totales,

$$P(S) = P(A \cap S) + P(B \cap S) + P(C \cap S)$$

$$= P(A) \times P(S) + O(12 + P(C) \times P(S))$$

$$= O(25 \times O(9 + O(12 + O(5)))$$

$$= O(255 + O(12 + O(5))$$

$$= O(855)$$

5)
$$P_s(B) = \frac{P(B \cap S)}{P(S)} = \frac{0.12}{0.855} = \frac{120}{855} = \frac{8}{57} \approx 0.140 \text{ (à 10}^{-3} \text{ pris)}$$

=> Partie B:

- 1) ② On répète m=50 fois de façon identique et indépendante une expérience de Bernoulli dont la probabilité du succès "la convexion est instable" est égale à $p=P(\overline{S})=0,145$ Done X suit la loi binomiale de parametres m=50 et p=0,145 $\times \sim S(50; 0,145)$
 - (b) En utilisant la forction de népartition de la calculature, on obtient: $P\left(\times \leqslant 8 \right) \approx 0,704 \quad \left(\grave{a} \cdot 10^{-3} \text{ près} \right)$
- 2) @ Soit $n \in \mathbb{N}^{+}$, $\times_{m} \sim \mathcal{B}(n; 0,145)$ $P_{m} = P(X_{m} \geqslant 1) = 1 P(X_{m} = 0) = 1 {m \choose 0} \times 0,145^{0} \times (1 0,145)^{m-0}$ $C => P_{m} = 1 1 \times 1 \times 0,855^{m} = 1 0,855^{m}$ $D_{onc} \forall m \in \mathbb{N}^{+}, P_{m} = 1 0,855^{m}$
 - (a) On rent m ∈ IH * tel que: Pm > 0,39

 (b) On sent m ∈ IH * tel que: Pm > 0,39

 (c) 1-0,855 m > 0,09

 (d) 0,855 m < 0,01

 (e) ln (0,855 m) < ln 0,01

 (e) m · ln 0,855 < ln 0,01

 (f) ln 0,855

 On ln 0,01

 ln 0,855

 Done il font au moino m = 30

Par linéarité de l'espérance, on a:

$$E(F_m) = E(\frac{x_m}{m}) = \frac{1}{m} \cdot E(x_m) = \frac{1}{m} \times 0.145 \, m = 0.145$$

6 D'après l'inégalité de Bienaymé-Tchebycher, avec une variable aléatoire X d'espérance pe et de variance V:

Appliquons cette inégalité à F_m en prenant $\delta = 0,1$, sochant

que
$$E(F_m) = 0.145$$
 et en admettant que $V(F_m) = \frac{0.123975}{m}$

$$P\left(\left|F_{m}-E\left(F_{m}\right)\right|\geqslant 0.1\right) \leqslant \frac{V\left(F_{m}\right)}{0.1^{2}}$$

On
$$\forall n \in \mathbb{N} \mid *$$
, $\frac{12,3975}{m} \leqslant \frac{12,5}{m}$

Done par transitivité, on obtient:

$$P(|F_m - 0.145| \geqslant 0.1) \leqslant \frac{12.5}{m}$$

© On donne $F_{1000} = 0,3$ Ainsi, $|F_{1000} - 0,145| = |0,3 - 0,145| = 0,155 \geqslant 0,1$ D'après la question précédente, la probabilité de cet événement est majorée par $\frac{12.5}{1000} = 0,0125$ (qui est très faible).

le responsable de l'entreprise a donc raison de soupçonner un dysforctionnement des serveurs.

Ex2:

$$(u_{m}): u_{0} = 2 \quad \text{et} \quad \forall m \in \mathbb{N}, \ u_{m+1} = \frac{2u_{m} + 1}{u_{m} + 2} \quad \text{et} \quad \forall m \in \mathbb{N}, \ u_{m} \neq -2$$

$$(u_{m}) \ln u_{1} = \frac{2u_{0} + 1}{u_{0} + 2} = \frac{2 \times 2 + 1}{2 + 2} = \frac{5}{4}$$

$$(u_{m}) \ln u_{1} = \frac{2u_{0} + 1}{u_{0} + 2} = \frac{2 \times 2 + 1}{2 + 2} = \frac{5}{4}$$

2) @
$$\forall m \in \mathbb{N}$$
, $a_m = \frac{u_m}{u_m - 1}$ et $\forall m \in \mathbb{N}$, $u_m \neq 1$ (con(a_m) hien définie)
$$a_0 = \frac{u_0}{u_0 - 1} = \frac{2}{2 - 1} = 2$$

$$a_1 = \frac{u_1}{u_1 - 1} = \frac{\frac{5}{4}}{\frac{5}{4} - 1} = \frac{\frac{5}{4}}{\frac{1}{4}} = \frac{5}{4} \times 4 = 5$$

(=)
$$a_{m+1} = \frac{2u_m + 1}{u_{m-1}} = \frac{3u_m - u_m + 1}{u_{m-1}} = 3 \frac{u_m}{u_{m-1}} + \frac{-u_m + 1}{u_{m-1}}$$
(=) $a_{m+1} = 3 a_m - 1$

© Démontions par nécurrence
$$S(m)$$
: $\forall m \in \mathbb{N}^{+}$, $a_m \geqslant 3m-1$

Initialisation: Rom $n=1$

on $a: a_1 = 5$

et $3m-1 = 3 \times 1 - 1 = 2 \leqslant a_1$

=) $S(1)$ wave

Héréclité: Soit $n \in \mathbb{N}^*$, supposons que $a_n \ge 3n-1$ et montions que $a_{n+1} \ge 3(n+1)-1$ i.e. $a_{n+1} \ge 3n+2$

D'agrès la question (b), on a: \text{\$\text{\$W \in MI}\$, \$a_{n+1} = 3a_n -1\$}

D'on: (HR) $a_n \geqslant 3n-1 \Rightarrow 3a_n \geqslant 3(3n-1)$ $\Rightarrow 3a_n \geqslant 9n-3$ $\Rightarrow 3a_n - 1 \geqslant 9n-4$ $\Rightarrow a_{n+1} \geqslant 9n-4$

Pour sutiliser la transitirété, résolvons l'inéquation suivante: $g_{m-4} \geqslant g_{m+2} \iff g_{m} = g_{m} =$

Conclusion: S'(n) est vaie pour n=1 et héréditaire à partir de ce rang, donc d'après le principe de récurrence: $\forall m \in \mathbb{N}^+, \ a_m \geqslant 3m-1$

On a: $\lim_{m\to +\infty} 3m = +\infty$ d'où $\lim_{m\to +\infty} 3m - 1 = +\infty$ Par ailleurs, d'après la question précédente: $\forall m \in INT^*$, $a_m \ge 3m - 1$ Donc d'après le théorème de comparaison: $\lim_{m\to +\infty} a_m = +\infty$

3) (a) On a:
$$\forall m \in \mathbb{N}$$
, $a_{m} = \frac{u_{m}}{u_{m}-1}$

(b) $a_{m}(u_{m}-1) = u_{m}$ et $u_{m}-1 \neq 0$

(c) $a_{m}.u_{m}-a_{m}-u_{m}=0$ et $u_{m} \neq 1$

(d) $u_{m}(a_{m}-1) = a_{m}$ et $u_{m} \neq 1$

(e) $u_{m} = \frac{a_{m}}{a_{m}-1}$ et $u_{m} \neq 1$

(sinon $0 = -1$)

Ainsi, $\forall m \in \mathbb{N}$, $u_{m} = \frac{a_{m}}{a_{m}-1}$

Démontions tout d'abond que $\forall n \in \mathbb{N}$, $a_n \neq 0$ D'après la question 2.c), on a $\forall n \in \mathbb{N}$, $a_n \neq 0$ Donc $\forall n \in \mathbb{N}^+$, $a_n \neq 0$ Par ailleurs, d'après la question 2.a), $a_0 = 2 \neq 0$ Donc $\forall n \in \mathbb{N}$, $a_n \neq 0$ Ainsi, $\forall n \in \mathbb{N}$, $u_n = \frac{a_n}{a_n - 1} = \frac{1}{\frac{a_n - 1}{a_n}} = \frac{1}{1 - \frac{1}{a_n}}$ D'après la question 2.d), on a $\lim_{n \to +\infty} a_n = +\infty$ Par passage à l'inverse, $\lim_{n \to +\infty} \frac{1}{a_n} = 0 + \infty$ Puis par apérations seu les limites, $\lim_{n \to +\infty} u_n = \frac{1}{1 - 0^+} = \frac{1}{1^-} = 1^+$

D' où (u_n) converge vers I

4.a) La suite (u_n) est décroissante et tend vers 1.

Ainsi, en partant de $u_0 = 2$, le programme tourne tant que la différence entre u_n et sa limite 1 est strictement supérieure à une valeur p (précision) donnée en argument.

La fonction « algo(p) » renvoie donc en premier résultat le plus petit rang n à partir duquel l'écart entre u_n et sa limite 1 devient inférieur ou égal à la valeur p (précision). La valeur u renvoyée en deuxième résultat correspond à la valeur de u_n pour le rang n renvoyé précédemment par le programme.

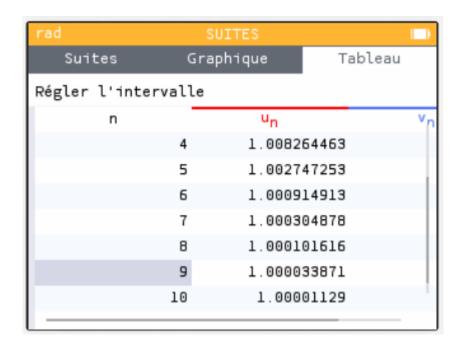
```
def algo(p):
    u=2
    n=0
    while u-1>p:
        u=(2*u+1)/(u+2)
        n=n+1
    return (n,u)
```

4.b) Le script renvoie n = 9 pour p = 0,001

```
>>> algo(0.0001)
(9, 1.000033870749221)
```

Le terme u_9 est donc le premier terme de la suite pour lequel $u_n \le 1,001$

C'est exactement ce que l'on retrouve avec la calculatrice :



Ex 3:

Affirmation 1: Vaie

(d) est dirigée par $\vec{u}\begin{pmatrix} -2 \\ 0 \\ -6 \end{pmatrix}$ et l'axe des ordonnées $(0, \vec{r})$ par $\vec{r}\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

VhER, $\vec{u} \neq k\vec{j}$ donc \vec{u} et \vec{j} ne sont pas colinéaires.

Ainsi, (d) et $(0, \vec{j})$ me sont pas parallèles. Elles sont soit sécantes, soit non coplanaires.

Puis on a: (d): $\begin{cases} x = 3-2t \\ y = -1 \end{cases}, t \in \mathbb{R} \quad \text{at } (0, \frac{1}{5}): \begin{cases} y = 0 \\ y = s \end{cases}, s \in \mathbb{R} \end{cases}$ $\begin{cases} 3 = 2-6t \end{cases}$

Recharhous l'éventuelle intersection de (d) et (0,7):

Done (d) 1 (0, F) = \$

Ainsi (d) et (0, 7) sont non coplanaires

Affirmation 2: Vaie

le plan S' tel que $(d) \perp S'$ a pour verteur normal $\vec{u}\begin{pmatrix} -2 \\ 0 \\ -6 \end{pmatrix}$ directeur de (d) Comme $A\begin{pmatrix} -3 \\ -3 \end{pmatrix} \in S'$, on α :

$$M\begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{T}' \iff \overrightarrow{AM} = 0$$

$$\iff -2(x-3) + 0 \times (y+3) + (-6) \times (z+2) = 0$$

$$\iff -2x + 6 - 6z - 12 = 0$$

$$\iff -2x - 6z - 6 = 0$$

$$\iff x + 3z + 3 = 0$$

Affirmation 3: Fausse

On a
$$C \in (d)$$
 $t_q \approx_c = 2$ (=> $3-2t_z = 2$ (=> $2t_z = 1$ (=> $t_z = \frac{1}{2}$)

D'où $\chi_c = 2-6.t_c = 2-6 \times \frac{1}{2} = 2-3 = -1$

Ainsi, on a:
$$C\begin{pmatrix} 2\\-1\\-1\end{pmatrix}$$

De plus, on a class le R.O.N.:
$$A\begin{pmatrix} 3\\ -3\\ -2 \end{pmatrix}$$
 et $B\begin{pmatrix} 5\\ -4\\ -1 \end{pmatrix}$

Ainsi,
$$\overline{AB}$$
 $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ et \overline{AC} $\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$

Puis
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 2 \times (-1) + (-1) \times 2 + | \times | = -2 - 2 + | = -3$$

Par ailleurs:
$$\|\overline{AB}'\| = \sqrt{\overline{AB}^2} = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6}$$

et $\|\overline{AC}'\| = \sqrt{\overline{AC}^2} = \sqrt{(-1)^2 + 2^2 + 1^2} = \sqrt{1 + 4 + 1} = \sqrt{6}$

On a enfin:
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times cos(\overrightarrow{BAC})$$

$$(\Rightarrow) \quad \cos\left(\widehat{BAC}\right) = \frac{\overline{AB} \cdot \overline{AC}}{\|\overline{AB}\|_{\infty} \|\overline{AC}\|}$$

$$(\Rightarrow) \quad \cos\left(\widehat{BAC}\right) = \frac{-3}{\sqrt{6} \times \sqrt{6}}$$

$$(=)$$
 $cos(\widehat{BAC}) = \frac{-3}{6}$

$$(\Rightarrow)$$
 (\otimes) (\otimes) $=$ $-\frac{1}{2}$

D'où
$$\widehat{BAC} = \frac{2\pi}{3} \neq \frac{\pi}{6}$$

Affirmation 4: Vhaie

Hest le projeté orthogonal de
$$B\begin{pmatrix} 5\\-1\\-1\end{pmatrix}$$
 sur S d'équation: $x + 3z - 7 = 0$
Ainsi $\vec{n}\begin{pmatrix} 1\\0\\3\end{pmatrix}$ mormal à S est un vecteur directeur de (HB).

Comme
$$B\begin{pmatrix} S \\ -4 \end{pmatrix} \in (HB)$$
, on a

Comme
$$B\begin{pmatrix} 5 \\ -4 \end{pmatrix} \in (HB)$$
, on a: $(HB): \begin{cases} x = 5 + \lambda \\ y = -4 \end{cases}$, $\lambda \in \mathbb{R}$

Puis (HB)
$$\cap$$
 S :
$$\begin{cases} x_{H} + 3 g_{H} - 7 = 0 \\ x_{H} = 5 + \lambda_{H} \end{cases} \Rightarrow 5 + \lambda_{H} + 3 (-1 + 3 \lambda_{H}) - 7 = 0 \\ y_{H} = -4 \\ y_{H} = -1 + 3 \lambda_{H} \end{cases} \Rightarrow 5 + \lambda_{H} - 3 + 9 \lambda_{H} - 7 = 0$$

$$\Rightarrow 5 + \lambda_{H} + 3(-1 + 3\lambda_{H}) - 7 = 0$$

$$\Rightarrow 5 + \lambda_{H} - 3 + 3\lambda_{H} - 7 = 0$$

=>
$$10 \lambda_{H} = 5$$

=> $\lambda_{H} = \frac{1}{2}$

$$\mathcal{D}' \text{ on } \begin{cases} x_{H} = 5 + \lambda_{H} = 5 + \frac{1}{2} = \frac{11}{2} \\ y_{H} = -4 \\ y_{H} = -1 + 3\lambda_{H} = -1 + 3 \times \frac{1}{2} = \frac{1}{2} \end{cases}$$

Ainsi, (HB)
$$\Lambda \hat{S} = \left\{ H \begin{pmatrix} \frac{H}{2} \\ -4 \\ \frac{1}{2} \end{pmatrix} \right\}$$

$$D'où BH = \|BH\| = \sqrt{BH^2} = \sqrt{\left(\frac{1}{2}\right)^2 + O^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{9}{4}} = \frac{\sqrt{10^2}}{\sqrt{9^2}} = \frac{\sqrt{10^2}}{2}$$

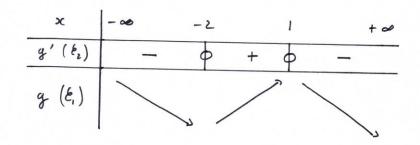
Ex4:

=> Partie A:

1) la combe t, correspond à la fonction g, et E_z à g'.

En effet, la combe E_z compe l'axe des abssisses en x=-2 et x=1, correspondant aux extremums locaux de E_z .

De plus, on a le tableau suivant avec la précision que permet la représentation graphique:



2) la tangente à \mathcal{E}_{g} (in \mathcal{E}_{i}) au point d'absence 0 a pour équation : $y = g'(0) \times (x - 0) + g(0)$ le point de coordonnées (0; 1) appartient à \mathcal{E}_{i} donc g(0) = 1Puis le point de coordonnées (0; 2) appartient à \mathcal{E}_{i} donc g'(0) = 2D'où l'équation de tangente : y = 2x + 1

1) La fontion $f_0: x \mapsto (x^2 + 3x) \cdot e^{-x}$ est dérivable sur \mathbb{R} comme produit de deux fonctions dérivables sur \mathbb{R} . $\forall x \in \mathbb{R}, \quad f_0'(x) = (2x+3) \cdot e^{-x} + (x^2 + 3x) \times (-e^{-x})$ $= (2x+3) \cdot e^{-x} - (x^2 + 3x) \cdot e^{-x}$

On a immédiatement: YxER,

$$f_o(x) + f_o'(x) = (x^2 + 3x) \cdot e^{-x} + (2x + 3) \cdot e^{-x} - (x^2 + 3x) \cdot e^{-x}$$

= $(2x + 3) \cdot e^{-x}$

Donc fo est solution particulière de (E).

- 2) Soit (E_0) : y + y' = 0 l'équation différentielle homogène associés à (E). y + y' = 0 $(E_0) = \{x \mapsto \lambda e^{-x}, \lambda \in \mathbb{R}\}$
- 3) la solution générale de (E) est la somme de la solution générale de l'équation différentielle homogène associée (Eo) et d'une solution particulière.

On a done:
$$S_{(E)} = \left\{ x \mapsto \lambda e^{-x} + (x^2 + 3x) \cdot e^{-x}, \lambda \in \mathbb{R} \right\}$$

$$= \left\{ x \mapsto (x^2 + 3x + \lambda) \cdot e^{-x}, \lambda \in \mathbb{R} \right\}$$

4)
$$g$$
 est solution de (E) et $g(0)=1$, ainsi:

 $\forall x \in R$, $g(x) = (x^2 + 3x + \lambda) \cdot e^{-x}$ avec λ à déterminent λ avec $g(0)=1$ (=> $(0^2 + 3x0 + \lambda) \cdot e^{-0}=1$

(=> $\lambda \times 1 = 1$

(=> $\lambda = 1$

D'où $\forall x \in R$, $g(x) = (x^2 + 3x + 1) \cdot e^{-x}$

5) Notons h les fonctions recherchées. h est solution de (E) done YzER, h(61) = (x2 + 3x + 1).e-x Pour détermine à, dérirons deux fois hqui est deux fois dérivable sur R en tent que produit de fonctions deux fois dévirables sur R. $\forall x \in \mathbb{R}, \ h'(x) = (2x+3) \cdot e^{-x} + (x^2+3x+\lambda) \times (-e^{-x})$ $=(-x^2-x+3-\lambda).e^{-x}$ Puis $\forall x \in \mathbb{R}$, $h''(x) = (-2x-1) \cdot e^{-x} + (-x^2-x+3-\lambda) \cdot (-e^{-x})$ $= \left(x^2 - x - 4 + \lambda\right) \cdot e^{-x}$ Pour que El admettent exactement deux points d'inflexion, il faut que h" s'annule deux fois en changeant de signe sur 18. On $\forall x \in \mathbb{R}, e^{-x} > 0$ donc h"(x) est du signe de $x^2 - x - 4 + \lambda$, forction polynème du second degré. Nous voulons donc: 1>0 € (-1)2-4×1×(-4+)>0 € 1+16-4>0 € >< 17/4 D'où $\forall x \in \mathbb{R}$, $h(x) = (x^2 + 3x + \lambda) \cdot e^{-x}$, $\lambda \in]-\infty; \frac{17}{4}[$

$$\Rightarrow$$
 Partie C: $\forall x \in \mathbb{R}, f(x) = (x^2 + 3x + 2).e^{-x}$

1)
$$\forall x \in \mathbb{R}^{+}$$
, $f(x) = \frac{x^{2} + 3x + 2}{e^{x}} = \frac{x^{2}}{e^{x}} + \frac{3x}{e^{x}} + \frac{2}{e^{x}} = \frac{1}{e^{x}} + \frac{3}{e^{x}} + \frac{2}{e^{x}}$

D'après le théorème des voissances comparées,

$$\lim_{x \to +\infty} \frac{e^x}{x^2} = 0^+ \quad \text{et} \quad \lim_{x \to +\infty} \frac{e^x}{x} = 0^+$$

Done for farage à l'invase,
$$\lim_{x\to+\infty} \frac{1}{\frac{e^x}{x^2}} = +\infty$$
 et $\lim_{x\to+\infty} \frac{3}{\frac{e^x}{x}} = +\infty$

Puis comme lim
$$e^x = +\infty$$
, on a lim $\frac{e}{e^x} = 0^+$

Par somme,
$$\lim_{z\to+\infty} f(zc) = +\infty$$

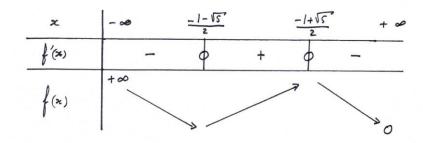
- 2) @ On admet que f est dévirable sur R, $\forall x \in R$, $f'(x) = (2x+3) \cdot e^{-x} + (x^2 + 3x + 2) \times (-e^{-x})$ $= (2x+3-x^2-3x-2) \cdot e^{-x}$ $= (-x^2-x+1) \cdot e^{-x}$
 - (b) $\forall x \in \mathbb{R}$, $e^{-x} > 0$ clore f'(x) est du signe de $-x^2 x + 1$ sur \mathbb{R} .

 Il s'agit d'une fortion polynôme du second degré concave can son coefficient dominant -1 est négatif. Recherchons ses nacines:

$$\Delta = (-1)^{2} - 4 \times (-1) \times 1 = 1 + 4 = 5$$

$$\sum_{x_{1}} x_{1} = \frac{-(-1) - \sqrt{5}}{2 \times (-1)} = \frac{1 - \sqrt{5}}{-2} = \frac{\sqrt{5} - 1}{2}$$

$$\sum_{x_{2}} x_{2} = \frac{-(-1) + \sqrt{5}}{2 \times (-1)} = \frac{1 + \sqrt{5}}{-2} = -\frac{1 + \sqrt{5}}{2}$$



- 3) Procéctions par disjonction de cas:
 - * f est strictment arrivante sur $\left[\frac{-1-\sqrt{5}}{2}; \frac{-1+\sqrt{5}}{2}\right]$ et $O \in \left[\frac{-1-\sqrt{5}}{2}; \frac{-1+\sqrt{5}}{2}\right]$ Par ailleurs, $f(0) = (0^2 + 3 \times 0 + 2)$. $e^{-0} = 2 \times 1 = 2 > 0$ Donc f est strictment positive sur $\left[0; \frac{-1+\sqrt{5}}{2}\right]$
 - * f est strictment décrossante sur $\left[\frac{-1+\sqrt{5}}{2}\right]$; $+\infty$ [et $\lim_{x\to+\infty} f(x) = 0+$ Donc f est strictment positive sur $\left[\frac{-1+\sqrt{5}}{2}\right]$; $+\infty$ [
 - * Conclusion: $\forall x \in [0; +\infty[$, f(x) > 0 , done $f(x) \ge 0$
 - Out $\forall x \in \mathbb{R}$, $f(x) = (x^2 + 3x + 2) \cdot e^{-x}$ on a $x_1 = -1$ nature évidente de $x \mapsto x^2 + 3x + 2$ can la somme alternée des coefficients est mulle . Buis $x_1 \cdot x_2 = \frac{2}{1} = 2$ Ainsi, $\forall x \in \mathbb{R}$, $f(x) = (x + 1)(x + 2) \cdot e^{-x}$ On $\forall x \in \mathbb{R}_+$, on a: $\begin{cases} x + 1 > 0 \\ x + 2 > 0 \end{cases}$ $e^{-x} > 0$ Donc $\forall x \in \mathbb{R}_+$, f(x) > 0, d'ai $\forall x \in \mathbb{R}_+$, f(x) > 0

4) Comme f est continue (can dérivable) et positive sur $[0; +\infty[$, l'aire $St(\alpha)$ du domaine du plan délimité par $(0, \vec{x})$, Cf et les droites d'équation x = 0 et $x = \alpha$ (avec $\alpha \in \mathbb{R}_+$) vaut: $\forall \alpha \in \mathbb{R}_+$, $\mathcal{F}(\alpha) = \int_0^\alpha f(\alpha) \, d\alpha = F(\alpha) - F(0)$

On on admet que: $\forall x \in \mathbb{R}$, $F(x) = (-x^2 - 5x - 7) \cdot e^{-x}$

D'où $F(0) = (-0^2 - 5 \times 0 - 7) \times e^{-0} = -7 \times 1 = -7$ et $F(\alpha) = (-\alpha^2 - 5\alpha - 7) \cdot e^{-\alpha}$

Ainsi, $\forall \alpha \in \mathbb{R}_+$, $\mathcal{I}(\alpha) = F(\alpha) + 7$ $= (-\alpha^2 - 5\alpha - 7) \cdot e^{-\alpha} + 7$