Ex1:

- 1) L'ordre est important et la répétition est autorisée.

 Nous cherchons donc le nombre de 3-explets (triplet) d'en ensemble à 8 éléments. Il y a ainsi $8^3 = 512$ tirages possibles.
- 2) © L'ordre est toujours important mais la répétition n'est plus autoisée. Il s'agit donc d'un arrangement de 3 éléments parmi 8. Il y a ainsi $A_8^3 = \frac{8!}{(8-3)!} = \frac{8!}{5!} = \frac{8 \times 7 \times 6}{5!} = \frac{336}{5!}$ triages possibles.
 - [OU Il y 2 8 choix pour le $1^{\frac{1}{2}}$ tirage, puis 7 choix pour le $2^{\frac{2}{2}}$ tirage et enfin 6 choix pour le $3^{\frac{2}{2}}$. Car principe multiplicatif, il y a donc $8 \times 7 \times 6 = 336$ tirages possibles.
 - (b) "Au moins une répétition de numéro" est la négation de "aucune répétition de numéro". On utilise donc le complémentaire.

 Il y a ainsi $8^3 \frac{8!}{5!} = 512 336 = 176$ tirages possibles
- 3) le sac est opaque et les 8 jetons sont indiscernables au toucher. Nous sommes donc dans une situation d'équipobabilité.

Ainsi,
$$\forall k \in \mathbb{I}_{1;8}$$
, $P(X_{,=}k_{)} = \frac{1}{8}$
 \times , sut une loi uniforme discrete sur $\mathbb{I}_{1;8}$, \times , $\sim U_{\mathbb{I}_{1;8}}$ (HP)

4)
$$E(X_1) = \sum_{k=1}^{8} k \times P(X_1 = k) = \sum_{k=1}^{8} \frac{1}{8} \times k = \frac{1}{8} \sum_{k=1}^{8} k = \frac{1}{8} \times \frac{8 \times (8+1)}{2} = \boxed{\frac{3}{2}}$$

(i)
$$E(X_1) = 1 \times \frac{1}{8} + 2 \times \frac{1}{8} + \dots + 8 \times \frac{1}{8} = \frac{1}{8} (1 + 2 + \dots + 8) = \frac{1}{8} \times \frac{8 \times (8+1)}{2} = \frac{9}{2}$$

- 5) X_1 , X_2 et X_3 suivent la même loi uniforme, et $S = X_1 + X_2 + X_3$ Puis $E(S) = E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = 3 \times E(X_1) = 3 \times \frac{9}{2} = \frac{27}{2}$ linionté de l'expirance
- 6) Pour obtenir S = 24, il faut $X_1 = 8$, $X_2 = 8$ et $X_3 = 8$ Il y a clore une unique façon d'obtenir S = 24D'où $P(S = 24) = \frac{Card(S = 24)}{Card(A)} = \frac{1}{8^3} = \frac{1}{512}$
- 7) (a) Nous pouvons lister tous les tivages permettant d'oltenir $(S \ge 22)$:

 * Pour S = 24: $\{(8; 8; 8)\}$
 - * lour S = 23: {(8; 8; 7); (8; 7; 8); (7; 8; 8)}
 - * lour S=22: {(8;7;7); (7;8;7); (7;7;8); (8;8;6); (8;6;8); (6;8;8)}

On a dore Card (S=24) = 1; Card (S=23) = 3 et Card (S=22) = 6

D'où Card $(S \ge 22) = Card (S=24) + Card (S=23) + Card (S=22)$ = 1 + 3 + 6= 10

(b) On a
$$P(S \ge 22) = \frac{Gard(S \ge 22)}{Gard(A)} = \frac{10}{512} = \frac{5}{256}$$

la probabilité de gagner un lot est donc de 5 256.

$$\forall x \in]-\infty; I[, f(x) = \frac{e^x}{x-1}]$$

1) (a) on a
$$\lim_{x\to 1^-} e^x = e > 0$$

 $\lim_{x\to 1^-} x - 1 = 0^-$

$$\lim_{x\to 1^-} f(x) = -\infty$$

$$\lim_{x\to 1^-} f(x) = -\infty$$

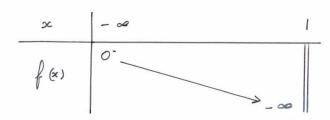
2) on a
$$\begin{cases} \lim_{x \to -\infty} e^{x} = 0^{+} \\ \lim_{x \to -\infty} x - 1 = -\infty \end{cases}$$

=> Par quotient, on obtient
$$\lim_{\infty \to -\infty} f(x) = 0$$
 facultatif

3) @ On admet que
$$f$$
 est dénirable sur $J-\omega$; $I[$

$$\forall x \in]-\omega$$
; $I[$, $f'(x) = \frac{e^{x}(x-1)-1\times e^{x}}{(x-1)^{2}} = \frac{e^{x}(x-1-1)}{(x-1)^{2}} = \frac{(x-2)e^{x}}{(x-1)^{2}}$

Ainsi, f est strictement décroissante sur]-0; 1[.



4) @ On admet que:
$$\forall x \in]-\infty; I[, f''(x) = \frac{(x^2-4x+5).e^x}{(x-1)^3}$$

On $\forall x \in]-\infty; I[, \begin{cases} e^x > 0 \\ (x-1)^3 < 0 \end{cases}$ can $x-1 < 0$

Done f'' set du signe opposé à x^2-4x+5 sur $]-\infty; I[$

$$\Delta = (-4)^2 - 4 \times 1 \times 5 = 16 - 20 = -4 < 0$$

Donc le polynôme n'admet pas de nacine néelle et il est du signe de son coefficient dominant 1>0. D'où $\forall z \in]-\infty; I[, \alpha^e-4x+5>0$

Ainsi,
$$\forall x \in]-\infty; |[, f''(x) < 0]$$

Donc f est concave sur $]-\infty; |[]$

(b) On a
$$f(0) = \frac{e^0}{0-1} = \frac{1}{-1} = -1$$

et $f'(0) = \frac{(0-2) \cdot e^0}{(0-1)^2} = \frac{-2 \times 1}{1^2} = -2$

D'où T:
$$y = f'(0) \times (x - 0) + f(0)$$

 $(\Rightarrow) y = -2x - 1$

- 5) @ La fonction f est continue (car dévirable) et strictement décroissante sur $J-\omega$; I[On a $\lim_{x\to -\infty} f(x) = 0^-$ et $\lim_{x\to -1^-} f(x) = -\infty$ Donc $f(J-\omega;I[) = J-\infty; O[= R_**$ Or $-2 \in R_**$ donc d'agnès le théorème de la hjection (corollaire du TVI), $\exists ! \alpha \in J-\omega; I[, f(\alpha) = -2$
 - (b) On a f(0) > -2 et f(0,3) < -2 donc $0 < \alpha < 0,3$ Ruis f(0,3) > -2 et f(0,4) < -2 donc $0,3 < \alpha < 0,4$ Ruis f(0,31) > -2 et f(0,32) < -2 donc $0,31 < \alpha < 0,32$ Ainsi, par balayage, on obtient $\alpha \in [0,31]$; 0,32[

Ex 3:

1) Dans le R.O.N.
$$(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$$
, on a: $I\begin{pmatrix} \frac{1}{2} \\ 0 \\ 0 \end{pmatrix}$ et $J\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$

2) On a
$$E\begin{pmatrix}0\\0\\1\end{pmatrix}$$
, donc $EJ\begin{pmatrix}1\\1\\-1/2\end{pmatrix}$

Ruis
$$F\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 et $H\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, olone $\overrightarrow{IH}\begin{pmatrix} -1/2 \\ 1 \end{pmatrix}$ et $\overrightarrow{IF}\begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$

On remarque que IH et IF ne sont pas colinéaires au la 2º composante de IF est mille alors que celle de IH me l'est pres.

On a:
$$\begin{cases} \overrightarrow{EJ} \cdot \overrightarrow{IH} = |x - \frac{1}{2} + |x| + \frac{-1}{2} |x| = -\frac{1}{2} + |-\frac{1}{2}| = 0 & \text{done } \overrightarrow{EJ} \perp \overrightarrow{IH} \\ \overrightarrow{EJ} \cdot \overrightarrow{IF} = |x - \frac{1}{2}| + |x| + \frac{-1}{2} |x| = \frac{1}{2} + |-\frac{1}{2}| = 0 & \text{done } \overrightarrow{EJ} \perp \overrightarrow{IF} \end{cases}$$

Ainsi, EJ est orthogonal aux vecteurs mon colinéaires IH et IF qui divigent

le plan (FHI). Donc
$$\overrightarrow{EJ}$$
 est normal au plan (FHI).

3) Soit $M\begin{pmatrix} x \\ y \end{pmatrix} \in (FHI)$. D'après la question précédente, on a :

$$M\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in (FHI) \iff EJ \cdot HM = 0$$

$$\iff 1 \times (x - 0) + 1 \times (y - 1) + \frac{-1}{2} \times (g - 1) = 0$$

$$\iff x + y - 1 - \frac{1}{2}g + \frac{1}{2} = 0$$

$$\iff 2x + 2y - g - 1 = 0$$

$$\iff -2x - 2y + g + 1 = 0$$

4) (EJ) est dirigée par $\overrightarrow{EJ}\begin{pmatrix} 1\\ -\frac{1}{2} \end{pmatrix}$, et donc auni par $\overrightarrow{u}\begin{pmatrix} 2\\ 2\\ -1 \end{pmatrix}$, et pane par $E\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}$.

D'où
$$(EJ)$$
: $\begin{cases} x = et \\ y = 2t \\ 3 = 1 - t \end{cases}$ Ne pas oullier

5) @ On note
$$K$$
 be projeté orthogonal de E sur (FHI)

Comme $(EJ) \perp (FHI)$, also or a $(EJ) \cap (FHI) = \{K\}$

D'où $\begin{cases} KE(FHI) \\ KE(EJ) \end{cases}$
 $\iff \begin{cases} -2x_k - 2y_k + 3x_k + 1 = 0 \\ x_k = 2t_k \\ y_k = 2t_k \\ 3x_k = 1 - t_k \end{cases}$

=>
$$-2 \times 2t_{k} - 2 \times 2t_{k} + 1 - t_{k} + 1 = 0$$

=> $-4t_{k} - 4t_{k} - t_{k} + 2 = 0$
=> $-3t_{k} = -2$
=> $t_{k} = \frac{2}{9}$

$$D'o = \begin{cases} x_{k} = 2t_{k} = 2 \times \frac{2}{9} = \frac{4}{9} \\ y_{k} = 2t_{k} = 2 \times \frac{2}{9} = \frac{4}{9} \\ 3k = 1 - t_{k} = 1 - \frac{2}{9} = \frac{7}{9} \end{cases}$$

(b) On admet que $L\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$, milieu de [EF], est le projeté orthogonal de I sur (EFH).

Ainsi, [IL] est la hauteur du tétraèdre EFHI issure de I, donc relative à la base EFH. EFH est un triangle rectangle isocèle en E, donc $\mathcal{F}_{EFH} = \frac{1}{2} EF^2 = \frac{1}{2} \times l^2 = \frac{1}{2} \text{ cm}^2$ Puis $V_{EFHI} = \frac{1}{3} \cdot \mathcal{F}_{EFH} \times IL$ On $IL\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ donc $IL = ||IL|| = ||IL||^2 = ||D|^2 = ||D|^2 = 1 \text{ cm}$ Ainsi, $V_{EFHI} = \frac{1}{3} \cdot \mathcal{F}_{EFH} \times IL = \frac{1}{3} \times \frac{1}{2} \times 1 = \frac{1}{6} \text{ cm}^3$

Ainsi,
$$V_{EFHI} = \frac{1}{3} * \mathcal{F}_{FHI} * EK$$

$$(=) \mathcal{A}_{FHI} = \frac{3 \times \frac{1}{6}}{EK}$$

On on a
$$E\begin{pmatrix} 0\\0\\1\end{pmatrix}$$
 et $K\begin{pmatrix} 4/9\\4/9\\7/9\end{pmatrix}$, Lone $\overrightarrow{EK}\begin{pmatrix} 4/9\\4/9\\-2/9\end{pmatrix}$

D'où
$$EK = ||\overline{EK}|| = \sqrt{\overline{EK}^2} = \sqrt{\left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^2 + \left(\frac{-2}{3}\right)^2}$$

(=)
$$EK = \sqrt{\frac{16 + 16 + 4}{g^2}} = \frac{\sqrt{36}}{g} = \frac{\sqrt{3} \times \sqrt{4}}{g} = \frac{2}{3} \text{ cm}$$

Einslement,
$$\mathcal{A}_{FHI} = \frac{1}{2 \times EK} = \frac{1}{2 \times \frac{2}{3}} = \frac{3}{4} \text{ cm}^2$$

=> Partie A:
$$\forall x \in \mathbb{R}_+, f(x) = \sqrt{x+1}$$

1) a admet que f'est dérivable sur R,

$$\forall x \in \mathbb{R}_+, \quad f'(x) = \frac{1}{2\sqrt{x+1}} > 0$$

Done f est studement croissante sur R_+

2)
$$\forall x \in \mathbb{R}_{+}$$
, $f(x) - x = \sqrt{x+1'} - x$

$$= \frac{(\sqrt{x+1'} - x)(\sqrt{x+1'} + x)}{\sqrt{x+1'} + x}$$
quantité conjuguée

$$= \frac{x+1-x^2}{\sqrt{x+1}+x}$$

$$= \frac{-x^2 + x + 1}{\sqrt{x+1} + x}$$

3) Soit
$$x \in \mathbb{R}_+$$
, $f(x) = x$ $(=)$ $f(x) - x = 0$

$$\stackrel{-x^2 + x + 1}{\sqrt{x + 1'} + x} = 0$$

$$\text{for } f(x) = x$$

$$\Delta = 1^{2} - 4 \times (-1) \times 1 = 1 + 4 = 5$$

$$\sum_{i=1}^{\infty} x_{i} = \frac{-1 - \sqrt{5}}{2 \times (-1)} = \frac{1 + \sqrt{5}}{2} \in 1$$

$$D'en \begin{cases} x_1 = \frac{-1 - \sqrt{5'}}{2 \times (-1)} = \frac{1 + \sqrt{5'}}{2} & \in \mathbb{R}_+ \\ x_2 = \frac{-1 + \sqrt{5'}}{2 \times (-1)} = \frac{1 - \sqrt{5'}}{2} & \notin \mathbb{R}_+ \end{cases}$$

D'où
$$S = \left\{ \frac{1+\sqrt{5}}{2} \right\}$$
, s.e. $f(x) = \infty$ admet pour unique solution $l = \frac{1+\sqrt{5}}{2}$

1) Démontions par récurrence S(n): $\forall n \in \mathbb{N}$, $1 \leq u_{n+1} \leq u_n$ Initialisation: four n = 0, on a $u_0 = 5$ et $u_1 = f(u_0) = f(5) = \sqrt{5+1}' = \sqrt{6}' \leq 5$ Ainsi, $1 \leq u_1 \leq u_0 = > S(0)$ vaie

Hérédité: Soit $m \in \mathbb{N}$, supposono que $|\langle u_{m+1} \rangle \langle u_m \rangle$ et $mq |\langle u_{m+2} \rangle \langle u_{m+1} \rangle$ On a $(\widehat{\mathbb{N}})$: $|\langle u_{m+1} \rangle \langle u_m \rangle = \int f(1) \langle f(u_{m+1}) \rangle \langle f(u_m) \rangle$ $= \int |\langle \nabla \overline{z} \rangle \langle u_{m+2} \rangle \langle u_{m+1} \rangle$ $= \int |\langle \nabla \overline{z} \rangle \langle u_{m+2} \rangle \langle u_{m+1} \rangle \langle u_{m+1} \rangle$ $= \int |\langle \nabla \overline{z} \rangle \langle u_{m+2} \rangle \langle u_{m+1} \rangle \langle u$

Conclusion: P(m) mais pour n=0 et héréditaire à partir de ce rang, donc d'après le principe de nécurrence: \formall n \in IN, 1 \leq u_{m+1} \leq u_m

- 2) On a: $\begin{cases} \forall m \in \Pi \mid, u_{m+1} \leqslant u_m => (u_m) \text{ est décroissante} \\ \forall m \in \Pi \mid, 1 \leqslant u_m => (u_m) \text{ est minorée par l} \end{cases}$ Ainsi, d'après le théorème de la convergence monotone, (u_m) converge vers un réel supérieur ou égal à 1.
- 3) (μ_m) converge et $\forall m \in \mathbb{N}$, $\mu_{m+1} = f(\mu_m)$ avec f continue (car dénirable) sur \mathbb{R}_+ . D'après le thérème du point fixe, la limite de (μ_m) est solution de l'équation f(x) = xDe plus, on sait que $\forall m \in \mathbb{N}$, $\mu_m \geq 1$.

 D'après la question \widehat{A} . \widehat{A} , on en conclut que $\lim_{m \to +\infty} \mu_m = l = \frac{1+\sqrt{5}}{2}$

- 4) @ seuil (2) nemoie la valeur: 5
 - (b) Ceci signifie que le rang 3 est le plus potit rang de la suite (u_m) à partir duquel la différence (en valeur absolue) entre u_m et sa limite est strictement inférieur à 10^{-4} .

Dit autrement, ug est le premier terme de la suite (u_m) qui permet d'avoir une approximation de $l = \frac{1+\sqrt{5}}{2}$ (le nombre d'or) à 10^{-4} près.

```
from math import *
def seuil(n):
    u=5
    i=0
    l=(1+sqrt(5))/2
    while abs(u-l)>=10**(-n):
        u=sqrt(u+1)
        i=i+1
    return(i)
```

```
>>> seuil(2)
5
>>> seuil(4)
9
```