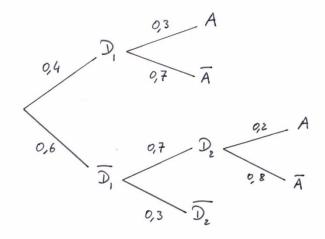
Ex1:

=> Partie A:



2) {D,; D, } forme un système complet d'événements.

On utilise la formule des probabilités totales en l'adaptant à l'aubre particular de cet exercice:

$$P(A) = P(D, \Lambda A) + P(\overline{D}, \Lambda(D_z \Lambda A))$$

$$= P(D_i) \times P_{D_i}(A) + P(\overline{D}_i) \times P_{\overline{D}_i}(D_z \Lambda A)$$

$$= 0.4 \times 0.3 + 0.6 \times P_{\overline{D}_i}(D_z) \times P_{D_z}(A)$$

$$= 0.12 + 0.6 \times 0.7 \times 0.2$$

$$= 0.12 + 0.084$$

$$= 0.204$$

3)
$$P_{A}(D_{i}) = \frac{P(D_{i} \cap A)}{P(A)} = \frac{0.12}{0.204} = \frac{120}{204} = \frac{30}{51} = \boxed{\frac{10}{17}}$$
 Aucum anondi demandé

- => Partie B:
 - 1) @ m = 30 et p = P(A) = 0,204 donc × ~ B(30; 0,204)
 - (b) $P(X=6) = {30 \choose 6} \times P^6 \times (1-p)^{30-6} = 593775 \times 0,204^6 \times 0,796^{24}$ $20,179 (à 10^{-3} perce)$
 - € E(x) = m x p = 30 x 0, 204 = 3 x 2, 04 = 6,12

Dans un échantillen de 30 personnes, en moyenne, il y en a environ 6 qui achetent le produit.

2) Soit m E M* et on considère désormais X 2 B(n; 0,204)

$$\implies n \geqslant \frac{\ln 0.01}{\ln 0.796}$$

) can be est stict wissante sur R+*

Ex2:

$$\forall x \in \mathbb{R}_+^*$$
, $f(x) = 3x + 1 - 2x \ln x$

1) On a
$$\lim_{x\to 0^+} x \ln x = 0$$
 (th. avisances comparées) et $\lim_{x\to 0^+} 3x + 1 = 1$

Donc par opérations sur les limites, on a : $\lim_{\alpha \to 0^+} f(\alpha) = 1$

Puis lim
$$f(x)$$
 est une F.I. du type "00-0"

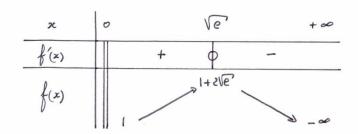
$$\forall x \in \mathbb{R}_{+} *, f(x) = o((3 - 2 \ln x) + 1)$$

Or
$$\lim_{x \to +\infty} \ln x = +\infty$$
 => $\lim_{x \to +\infty} -2 \ln x = -\infty$ => $\lim_{x \to +\infty} 3 - 2 \ln x = -\infty$

Puis par produit,
$$\lim_{x\to+\infty} x(3-2\ln x) = -\infty$$

Et enfin per somme,
$$\lim_{z \to +\infty} f(z) = -\infty$$

$$\forall x \in \mathbb{R}_{+}^{*}$$
, $f'(x) = 3 + 0 - 2 \left(1 \times \ln x + 2 \times \frac{1}{2} \right) = 3 - 2 \left(\ln(x) + 1 \right)$
= $3 - 2 - 2 \ln x$
= $1 - 2 \ln x$



$$f(e^{\frac{1}{2}}) = 3 \times e^{\frac{1}{2}} + 1 - 2 e^{\frac{1}{2}} \ln (e^{\frac{1}{2}})$$

$$= 3 \sqrt{e'} + 1 - 2 \sqrt{e'} \times \frac{1}{2}$$

$$= 3 \sqrt{e'} + 1 - \sqrt{e'}$$

$$= 1 + 2 \sqrt{e'}$$

- 3) @ Procédons par disjonction de cas:
 - * Sur JO; Ve'], f est minorée par I > 0 (f est stict. covinante et)

 Donc l'équation f(x) = 0 n'admet pas de solution sur cet interestle.
 - * Sen] \sqrt{e} ; $+\infty$ [, f est continue et strictement décroissante

 De plus, $O \in]-\infty$; $1+2\sqrt{e}$ [=] $\lim_{x\to+\infty} f(x)$; $f(\sqrt{e})$ [= $f(]\sqrt{e}$; $+\infty$ [)

 Donc d'après le théorème de la bijection (corollaire du TVI),

 l'équation f(x) = 0 admet une unique solution α sur] \sqrt{e} ; $+\infty$ [
 - * Conclusion: $\exists ! \alpha \in \mathbb{R}_+^*, f(\alpha) = 0$
 - 6 On déduit des deux dernières questions le tableau de signes de f:

$$f(x) + 0 - arec $\alpha > \sqrt{e}$$$

4) Soit Fune primitive de f our R_{+} *

Done $\forall x \in R_{+}$ *, F(x) = f(x)On $\forall x \in [(e'; \alpha [, f(x)) > 0]$

Donc F est stidement croissante sur $\left[\sqrt{e} \right]$; $\alpha \left[C \left[e^{\frac{1}{2}} \right] + \omega \right]$ Ainsi l'affirmation "F strictement décroissante sur $\left[e^{\frac{1}{2}} \right] + \omega \left[ast \right]$ ast fausse. 5) @ D'apris l'énoncé, on admet que f est deux fois dévirable seu \mathbb{R}_+ *, et on a $\forall x \in \mathbb{R}_+$ *, $f'(x) = 1 - 2 \ln x$

D'où
$$\forall x \in \mathbb{R}_{+}^{*}$$
, $f''(x) = 0 - 2 \times \frac{1}{x} = -\frac{2}{x} < 0$

Ainsi, par définition, Ef est située en dessous de toutes ses tangentes.

(b) On a: $f'(1) = 1 - 2 \times \ln 1 = 1 - 2 \times 0 = 1$ et $f(1) = 3 \times 1 + 1 - 2 \times 1 \times \ln 1 = 3 + 1 - 2 \times 0 = 4$

D'où T:
$$y = f'(1) \times (x-1) + f(1)$$

(=) $y = 1 \times (x-1) + 4$
(=) $y = x - 1 + 4$
(=) $y = x + 3$

© Ef est située en dessous de toutes ses tangentes, et en particulia en dessous de T d'équation y = x + 3

D'où
$$\forall x \in \mathbb{R}_{+}^{*}$$
, $f(x) \langle x+3 \rangle = 3x+1-2x \ln x \langle x+3 \rangle$
(=) $2x \ln x \rangle 2x-2$
(=) $x \ln x \rangle x-1$
(=) $\ln x \rangle \frac{x-1}{x}$
(=) $\ln x \rangle 1-\frac{1}{x}$

Ex3:
=> Postic A: Soit (u_n):
$$u_0 = 3$$
 et $\forall n \in \mathbb{N}$, $u_{me1} = \frac{1}{2}u_m + \frac{1}{2}n + 1$
D A
 $u_1 = \frac{1}{2}u_0 + \frac{1}{2} \times 0 + 1 = \frac{1}{2} \times 3 + 0 + 1 = \frac{5}{2}$
 $u_2 = \frac{1}{2}u_1 + \frac{1}{2} \times 1 + 1 = \frac{1}{2} \times \frac{5}{2} + \frac{1}{2} + 1 = \frac{5}{4} + \frac{3}{2} = \frac{5}{4} + \frac{4}{4} = \frac{11}{4}$
2) B
 $\forall n \in \mathbb{N}$, $\forall n = u_n - n$
Done $\forall n \in \mathbb{N}$, $\forall n = u_n - n$
 $= \frac{1}{2}u_m + \frac{1}{2}n + 1 - n + 1$
 $= \frac{1}{2}u_m - \frac{1}{2}n$
 $= \frac{1}{2}(u_m - n)$
 $= \frac{1}{2}(u_m - n)$
 $= \frac{1}{2} \times n$
D'où $(\forall n)$ est géonétrique de vaison $q = \frac{1}{2}$
Rem: On pourant commences par calcular les premies termes de $(\forall n)$ pour faire une conjecture.
3) D

Rem : En cas de doute, ne pas hésiter à écrire les 3 scripts sur la calculatrice pour comparer nos calculs de la première question avec les premiers termes renvoyés.

for i in range(n):
 U=U/2+i/2+1

return U

=> Partie B:

1) Démontions par nécurrence S(n): $\forall n \in \mathbb{N}$, $m \leqslant u_n \leqslant m+3$ Initialization: lour m=0, on a $u_0=3$ qui vérifie $0 \leqslant u_0 \leqslant 0+3$ => S(0) vaie

Hérédité: Soit $n \in \mathbb{N}$, supposons que $n \leqslant u_n \leqslant n+3$ et montions que $n+1 \leqslant u_{n+1} \leqslant n+4$

On a:
$$m \le M_m \le m+3 = > \frac{m}{2} \le \frac{1}{2} M_m \le \frac{m+3}{2}$$

=) $\frac{m}{2} + \frac{m}{2} \le \frac{1}{2} M_m + \frac{1}{2} m \le \frac{m+3}{2} + \frac{m}{2}$
=) $m \le \frac{1}{2} M_m + \frac{1}{2} m \le m + \frac{3}{2}$
=> $m+1 \le \frac{1}{2} M_m + \frac{1}{2} m + 1 \le m + \frac{3}{2} + 1$
=> $m+1 \le M_{m+1} \le m + \frac{5}{2} \le m+4$
=> $\Re(m+1)$ maie par transitivité

Conclusion: S(m) vraic pour m = 0 et héréditaire à partir de ce rang, donc d'après le principe de récurrence: \text{\text{Tm} \in \text{II}}, m \left\left\langle m + 3

- 2) On a $\forall n \in \mathbb{N}$, $u_m > n$ donc d'après le théorème de comparaison, $\lim_{m \to +\infty} u_m = +\infty$
- 3) $Q_{r} a : \forall m \in \mathbb{N}^{1+}, \quad m \leqslant u_{m} \leqslant m+3 \implies \frac{m}{m} \leqslant \frac{u_{m}}{m} \leqslant \frac{m+3}{m}$ $\Rightarrow 1 \leqslant \frac{u_{m}}{m} \leqslant 1 + \frac{3}{m}$

On $\lim_{m \to +\infty} \frac{3}{m} = 0$ => $\lim_{m \to +\infty} 1 + \frac{3}{m} = 1$

Ainsi, d'agrès le théorème d'encadrement (th. des gendames), $\lim_{m\to+\infty} \frac{n}{m} = 1$

Ex 4:

- 1) Dans le R.O.N. (D; DH, DC, DA), on a F(!) et C(0)
- 2) M'est le centre du carré BCGF, donc M'est le milieu de [CF]

$$D'_{ou} \begin{cases} x_{M} = \frac{1}{2}(x_{c} + x_{F}) = \frac{1}{2}(0+1) = \frac{1}{2} \\ y_{M} = \frac{1}{2}(y_{c} + y_{F}) = \frac{1}{2}(1+1) = 1 \\ y_{M} = \frac{1}{2}(y_{c} + y_{F}) = \frac{1}{2}(0+1) = \frac{1}{2} \end{cases}$$

i.e.
$$M \binom{\frac{1}{2}}{\frac{1}{2}}$$

De même, N est le milieu de [FH], avec $H\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $D'où \begin{cases} x_N = \frac{1}{2} (x_F + x_H) = \frac{1}{2} (1+1) = 1 \\ y_N = \frac{1}{2} (y_F + y_H) = \frac{1}{2} (1+0) = \frac{1}{2} \end{cases}$ i.e. $N\begin{pmatrix} 1 \\ 1/2 \end{pmatrix}$ $y_N = \frac{1}{2} (y_F + y_H) = \frac{1}{2} (1+0) = \frac{1}{2}$

3) (a) Diens le RON., on a :
$$A\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
; $G\begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $H\begin{pmatrix} 1 \\ 0 \end{pmatrix}$; $F\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $C\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

D'où $\overrightarrow{AG}\begin{pmatrix} 1 \\ -1 \end{pmatrix}$; $\overrightarrow{HF}\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ et $\overrightarrow{CF}\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Puis
$$\begin{cases} \overrightarrow{AG} \cdot \overrightarrow{HF} = | \times O + | \times | + (-1) \times | = O + | - | = O & donc \ \overrightarrow{AG} \perp \overrightarrow{HF} \\ \overrightarrow{AG} \cdot \overrightarrow{CF} = | \times | + | \times O + (-1) \times | = | + O - | = O & donc \ \overrightarrow{AG} \perp \overrightarrow{CF} \end{cases}$$

 \overrightarrow{AG} est orthogonal aux vecteurs \overrightarrow{HF} et \overrightarrow{CF} non colinéaires (can H. Fot c ne sont pas chignés) qui dirigent (HFC), donc $\overrightarrow{AG}(\underline{\cdot}|\underline{\cdot})$ est normal \overrightarrow{a} (HFC).

(a) Ainsi, (HFC) a une eq. cartésienne de la forme $1 \times x + 1 \times y + (-1) \times z + d = 0$ (=) x + y - 3 + d = 0On $H(\frac{1}{6}) \in (HFC) \iff x_{H} + y_{H} - 3_{H} + d = 0 \iff 1 + 0 - 0 + d = 0 \iff d = -1$ D'où (HFC): x + y - 3 - 1 = 0

- 4) (A6) est dirigée par \overline{AG} (!) et passe par A (G), d'où or peut donner une représentation paramétrique: (A6): $\begin{cases} x = t \\ y = t \end{cases}$, $t \in \mathbb{R}$ A Ne pasoublier
- 5) On a (AG) I (HFC)

 Donc le projeté orthogonal de G & (HFC) sur (HFC) est le point d'intersection de (AG) et de (HFC).

(AG)
$$\cap$$
 (HFC):
$$\begin{cases} x + y - 3 - 1 = 0 \\ x = t \\ y = t \end{cases}$$
 => $2t - 1 + t - 1 = 0$
=> $3t = 2$
=> $t + \frac{2}{3}$

Puis
$$\begin{cases}
c = t = \frac{2}{3} \\
y = t = \frac{2}{3}
\end{cases}$$

$$3 = 1 - t = 1 - \frac{2}{3} = \frac{1}{3}$$
D'où
$$\begin{cases}
R \left(\frac{2/3}{3}\right) \text{ est le projeté} \\
1/3
\end{cases}$$
orthogonal de 6 sur (HFC)

Rem: les coordonnées étant données dans l'énoncé, on pouvait également vérifier que $R\begin{pmatrix} 2/3\\2/3\\1/3\end{pmatrix} \in (A6)$ et $R\begin{pmatrix} 2/3\\2/3\\1/3\end{pmatrix} \in (HFC)$

6) Dans le R.O.N., on a
$$K\left(\frac{1}{t}\right)$$
 avec $t \in \mathbb{R}$, can $K \in (FG)$

Peris comme $M\left(\frac{V_2}{V_2}\right)$ et $N\left(\frac{V_2}{V_2}\right)$ ont été calculés dans la question 2),

on a : $\overrightarrow{MK}\left(\frac{V_2}{t-V_2}\right)$ et $\overrightarrow{NK}\left(\frac{O}{V_2}\right)$
 $t \in \mathbb{R}$

Phis KMN est rectangle en
$$K = \overline{MK} \cdot \overline{NK} = 0$$

$$(=) \frac{1}{2} \times 0 + 0 \times \frac{1}{2} + (t - \frac{1}{2}) \times (t - \frac{1}{2}) = 0$$

$$(=) (t - \frac{1}{2})^2 = 0$$

$$(=) t = \frac{1}{2} \quad (\text{solution double})$$

L'équation ayant une unique solution, 3! KE(FG), KMN rectangle en K

K est le point de (FG) de paramète $t = \frac{1}{2}$

D'où
$$\begin{cases} x = 1 \\ y_k = 1 \\ 3k = t_k = \frac{1}{2} \end{cases}$$
 i.e.
$$\left[\frac{1}{2} \right]$$

i.e.
$$K \begin{pmatrix} 1 \\ 1 \\ 1/2 \end{pmatrix}$$

On or a
$$\overrightarrow{MK} \begin{pmatrix} 1/2 \\ 0 \\ 0 \end{pmatrix}$$
 et $\overrightarrow{NK} \begin{pmatrix} 0 \\ 1/2 \\ 0 \end{pmatrix}$, donc $MK = NK = \frac{1}{2}$ w.l.

D'où $\mathcal{A}_{KMN} = \frac{1}{2} KM \times KN = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{8}$ u.a.

Euis les points M, N et K ont la même côte, donc (MNK) // (DCG)

Comme (FG)
$$\perp$$
 (DCG), on a également (FG) \perp (MNK)

De plus, comme $K \in (FG)$, on a $(FK) \perp (MNK)$

Ainsi, (FK) est la hauteur clu tétraèdre $FNKM$ relative à la base KMN

3) On a clone
$$V_{FNKM} = \frac{1}{3} \times \mathcal{A}_{KMN} \times FK$$

On on a $FK\begin{pmatrix} 0 \\ -\frac{1}{2} \end{pmatrix}$, clone $FK = ||FK^2|| = \sqrt{FK^2} = |(-\frac{1}{2})^2| = |-\frac{1}{2}| = \frac{1}{2}$ u.l.

D'où $V_{FNKM} = \frac{1}{3} \times \mathcal{A}_{KMN} \times FK = \frac{1}{3} \times \frac{1}{8} \times \frac{1}{2} = \frac{1}{48}$ u.v.

Can ailleurs, ABCDEFGH est un cube de côté I u.l.

Donc
$$V_{ABCDEFGH} = 1^3 = 1$$
 u.v.

Ainsi, la fraction Z rechuchée se calcule comme suit:

$$T = \frac{V_{FNKM}}{V_{ABCDEFGH}} = \frac{\frac{1}{48}}{1} = \frac{1}{48}$$
Sans unité

Pour information, nous avons découpé la réponse à la question 7 en 4 temps :

- → 1) Calcul de l'aire de la base triangulaire *KMN* du tétraèdre *FNKM*
- ightharpoonup 2) Justification de la configuration du tétraèdre FNKM préalable au calcul de volume
- → 3) Calcul du volume du tétraèdre *FNKM*
- ightharpoonup 4) Détermination de la fraction du cube ABCDEFGH que représente le tétraèdre FNKM

